The stress response neuropeptide CRF increases amyloid-β production by regulating γ-secretase activity.
نویسندگان
چکیده
The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid-β (Aβ) production. In cells, CRF treatment increases Aβ production and triggers CRF receptor 1 (CRFR1) and γ-secretase internalization. Co-immunoprecipitation studies establish that γ-secretase associates with CRFR1; this is mediated by β-arrestin binding motifs. Additionally, CRFR1 and γ-secretase co-localize in lipid raft fractions, with increased γ-secretase accumulation upon CRF treatment. CRF treatment also increases γ-secretase activity in vitro, revealing a second, receptor-independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ-secretase activity. Unexpectedly, CRFR1 antagonists also increased Aβ. These data collectively link CRF to increased Aβ through γ-secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aβ and in some cases preferentially increase Aβ42 via complex effects on γ-secretase.
منابع مشابه
α-Synuclein increases β-amyloid secretion by promoting β-/γ-secretase processing of APP
α-Synuclein misfolding and aggregation is often accompanied by β-amyloid deposition in some neurodegenerative diseases. We hypothesised that α-synuclein promotes β-amyloid production from APP. β-Amyloid levels and APP amyloidogenic processing were investigated in neuronal cell lines stably overexpressing wildtype and mutant α-synuclein. γ-Secretase activity and β-secretase expression were also ...
متن کاملThe BACE1-PSEN-AβPP regulatory axis has an ancient role in response to low oxygen/oxidative stress.
Oxygen homeostasis is essential for the development and normal physiology of an organism. Hypoxia causes the mitochondrial electron transport chain to generate higher levels of reactive oxygen species resulting in oxidative stress. Hypoxia can be a direct consequence of hypoperfusion, a common vascular component among Alzheimer's disease (AD) risk factors, and may play an important role in AD p...
متن کاملRoles of glycogen synthase kinase 3 in Alzheimer's disease.
Evidence from basic molecular biology has noted a critical role of GSK-3 in Alzheimer's disease (AD) pathogenesis such as beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangle (NFT), and neuronal degeneration. Aβ generation and deposition represents a key feature and is generated from APP by the sequential actions of two proteolytic enzymes: β-secretase and γ-se...
متن کاملIndependent Relationship between Amyloid Precursor Protein (APP) Dimerization and γ-Secretase Processivity
Altered production of β-amyloid (Aβ) from the amyloid precursor protein (APP) is closely associated with Alzheimer's disease (AD). APP has a number of homo- and hetero-dimerizing domains, and studies have suggested that dimerization of β-secretase derived APP carboxyl terminal fragment (CTFβ, C99) impairs processive cleavage by γ-secretase increasing production of long Aβs (e.g., Aβ1-42, 43). O...
متن کاملMitofusin‐2 knockdown increases ER–mitochondria contact and decreases amyloid β‐peptide production
Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria-associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM-associated proteins and enhanced ER to mitochondria Ca(2+) transfer from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 34 12 شماره
صفحات -
تاریخ انتشار 2015